Matching Pursuit for Denoising Raman Spectra, Based on Genetic Algorithm and Hermite Atoms

Author:

Vazquez-Osorio Noe1ORCID,Castro-Ramos J.1ORCID,Sánchez-Escobar Juan Jaime2ORCID

Affiliation:

1. Coordinación de Óptica, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico

2. Subdirección de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, Jalisco, Mexico

Abstract

Due to its various advantages, Raman spectroscopy has become a powerful tool in different fields of science and engineering; however, in specific applications, this technique's limiting factor is closely related to the inherent noise of the Raman spectra. To eliminate the noise of a Raman spectrum, preserving its position, intensity, and width characteristic, we propose using a genetic matching pursuit-Hermite atoms (GMP-HAs) algorithm in this work. This algorithm helps recover Raman spectra immersed in Gaussian noise with the least number of atoms. The noise-free Raman signal is reconstructed with the GMP-HAs algorithm, transforming the typical best-matching atom search into an optimization problem. Specifically, we maximize the fitness function, defined as the correlation between current residual and Hermite atoms, with the genetic algorithm MI-LXPM encoded in a real domain and avoiding local maxima, by adding a stopping criterion based on an exponential adjustment according to the algorithm's behavior in the presence of noise. Simulated and biological Raman spectra are used to evaluate the proposed algorithm and compare its performance with typically known methods for denoising, such as the Savitzky– Golay filter (SG) and basis pursuit denoising. Using the signal-to-noise ratio (S/N)metric resulted in a 0.31 dB advantage in the S/N product for the proposed algorithm with respect to SG. Additionally, it is shown that the algorithm uses only 25.3% of the number of atoms needed by the matching pursuit algorithm. The results indicate that the GMP-HAs algorithm has better denoising capabilities, and at the same time, the Raman spectra are decomposed with fewer atoms compared to known sparse algorithms.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3