Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification

Author:

Koshelev Daniil S.12ORCID

Affiliation:

1. Faculty of the Material Science, Lomonosov Moscow State University, Moscow, Russian Federation

2. Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation

Abstract

Fourier transform infrared spectroscopy (FT-IR) is a widely used spectroscopic method for routine analysis of substances and compounds. Spectral interpretation of spectra is a labor-intensive process that provides important information about functional groups or bonds present in compounds and complex substances. In this paper, based on deep learning methods of convolutional neural networks, models were developed to determine the presence of 17 classes of functional groups or 72 classes of coupling oscillations in the FT-IR spectra. Using web scanning, the spectra of 14 361 FT-IR spectra of organic molecules were obtained. Several different variants of model architectures with different sizes of feature maps have been tested. Based on the Shapley additive explanations (SHAP) and gradient-weighted class activation mapping (GradCAM) methods, visualization tools have been developed for visualizing and highlighting the areas of absorption bands manifestation for corresponding functional groups or bonds in the spectrum. To determine 17 and 72 classes, the F1-weighted metric, which is the harmonic mean of the class' precision and class' recall weighted by class' fraction, reached 93 and 88%, respectively, when using data on the position of absorption maxima in the spectrum as an additional source layer. The resulting model can be used to facilitate the routine analysis of spectra for all areas such as organic chemistry, materials science, and biology, as well as to facilitate the preparation of the obtained experimental data for publication.

Funder

‘Intellect’ Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3