Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis

Author:

Poggialini Francesco1ORCID,Campanella Beatrice1,Legnaioli Stefano1,Raneri Simona1,Palleschi Vincenzo1ORCID

Affiliation:

1. Applied and Laser Spectroscopy Lab, ICCOM, Pisa, Italy

Abstract

The introduction of “deep learning” algorithms for feature identification in digital imaging has paved the way for artificial intelligence applications that up to a decade ago were considered technologically impossible to achieve, from the development of driverless vehicles to the fully automated diagnostics of cancer and other diseases from histological images. The success of deep learning applications has, in turn, attracted the attention of several researchers for the possible use of these methods in chemometrics, applied to the analysis of complex phenomena as, for example, the optical emission of laser-induced plasmas. In this paper, we will discuss the advantages and disadvantages of convolutional neural networks, one of the most diffused deep learning techniques, in laser-induced breakdown spectroscopy (LIBS) applications (classification and quantitative analysis), to understand the real potential of “deep LIBS” in practical everyday use. In particular, the comparison with the results obtained using “shallow” artificial neural networks will be presented and discussed, taking as a case study the analysis of six bronze samples of known composition.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3