Modeling with Multiple Correlated Spectral Data Based on Approximating the Nonlinear Spectrum Induced by Scattering

Author:

Luo Yongshun12,Li Gang23,Shan Guosong1,Lin Ling23ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, China

2. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China

3. Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China

Abstract

In the spectral quantitative analysis of scattering solution, the improvement of accuracy is seriously restricted by the nonlinearity caused by scattering, and even the measurement will fail due to the influence of scattering. The important reasons are that the modeling variables are greatly affected by nonlinearity, and the information contained in the modeling data cannot represent the scattering characteristics. In this paper, a method is proposed, in which the spectral data of several optical pathlengths with equal space are combined as the modeling data set of a sample. These highly correlated spectral data contain relatively nonlinear information. The addition of the spectral data provides more options for the selection of principal components in modeling with PLS method. By giving lower weight to the corresponding wavelength which is greatly affected by scattering, the model is insensitive to scattering and the prediction accuracy is improved. Through the spectral quantitative analysis experiment on strong scattering material, the prediction accuracy of the model was 61.7% higher than that of the traditional method and was 58.5% higher than that of the variable sorting for normalization method. The feasibility of the method is verified.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3