Miniaturized and Portable Laser Gas Sensor for Standoff Methane Detection With Non-Cooperative Targets

Author:

Li Jinyi1ORCID,Ma Wei1,Wang Zebin1,Zhou Yun1,He Lingui1,Lin Ming2,Ji Yue1

Affiliation:

1. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, China

2. Tianjin Advanced Laser Technology Center, Tianjin, China

Abstract

A standoff methane (CH4) sensor with actual hard topographic targets (usually called non-cooperative targets) is essential for natural gas pipeline leakage inspection and many other practical applications. To address this requirement, a miniaturized and low-power-consumption gas sensor was developed based on tunable diode laser absorption spectroscopy for standoff CH4 detection with a non-cooperative target. Wavelength modulation spectroscopy with a 1 f normalized 2 f detection method was employed for calibration-free CH4 measurement. A Kalman filter algorithm was used to improve the precision of the detection. The performance of the standoff CH4 sensor was evaluated comprehensively under various conditions, including different incident angles, different hard topographic targets, and different standoff distances. The results show that the measurement precision is 0.107% and the sensitivity is 4.08 parts per million per meter (ppm·m) with a time resolution of 1 s and a standoff distance of 40 m. The detection limit can achieve 1.24 ppm·m at an optimal integration time of 70 s. This sensor can be easily integrated into mobile platforms, which lays the foundation for intelligent leak inspection.

Funder

Natural Science Foundation of Tianjin Municipality

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3