Beyond Beer's Law: Spectral Mixing Rules

Author:

Mayerhöfer Thomas G.12ORCID,Popp Jürgen12

Affiliation:

1. Leibniz Institute of Photonic Technology (IPHT), Jena, Germany

2. Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany

Abstract

Based on Beer's law, it is assumed that the absorbance of a mixture is that of the neat materials weighted by their relative amounts (linear mixing rule). In this contribution, we show that this is an assumption that holds only under various approximations for which no change of the chemical interactions is just one among several. To understand these approximations, which lead incrementally to different well known mixing rules, we finally derive the linear mixing rule from the Lorentz–Lorenz relation, with the first approximation that the local electric field is correctly described in this relation. Further levels of approximation are that the local field equals the applied field (Newton–Laplace mixing rule) and that the change of the index of refraction and, equivalently, absorption is weak (Gladstone–Dale/Arago–Biot mixing rule). Even then the linear mixing rule is only strictly valid if the indices of refraction in the transparency region at higher frequency than the absorption have the same value and the mixing is homogeneous relative to the resolving power of the light (“micro-homogeneous”). Under these preconditions, linear mixing of the individual absorbances is established. We illustrate the spectral differences between the different mixing rules, all of which are based on volume and not on mass fractions, with examples. For micro-heterogeneous samples, a different linear mixing rule governs the optical properties, which refers to the experimental quantities, reflectance, and transmittance. As a result, for such samples, mixtures of already comparably high content give only weak signals due to band flattening, which are hard to distinguish from baseline effects.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3