Combined Microspectroscopic Characterization of a Red-Colored Granite Rock Sample

Author:

Okada Katsuya1,Nakashima Satoru1ORCID

Affiliation:

1. Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan

Abstract

Combined microspectroscopic mapping have been conducted on a red-colored Tenzan granite sample by using an original visible–fluorescence–Raman microspectrometer together with a low vacuum scanning electron microscopy–energy dispersive spectrometry (SEM-EDS) without coating. Visible darkfield reflectance spectra were converted to L*a*b* color values and Kubelka–Munk (KM) spectra. Large a* value (red) positions correspond to large band areas at 500–560 nm, possibly due to hematite-like iron oxide, while large b* value (yellow) positions to large band areas at 450–500 nm, due to epidote-like mineral. Scanning electron microscopy–energy dispersive spectrometry analyses indicated that the reddish parts are Na and K-feldspars with low Fe contents (<0.5 wt%). Raman microspectroscopy could not detect hematite-like minerals. Since some hematite-like minerals were only identified by transmission electron microscope, they are considered to be submicron microcrystals disseminated in feldspar matrices. The KM spectra for prehnite-like minerals show a weak broad band around 430 nm due possibly to a ligand field band of Fe3+ without clear Fe2+–Fe3+ inter-valence charge transfer (IVCT) bands around 720 nm. Therefore, Fe in prehnite is not considered to be present as hematite-like iron oxide, but can be mainly present as Fe3+ replacing Al3+ in the crystal structure. Since determination of physicochemical states of Fe such as valence and coordination states (Fe2+ or Fe3+, oxide or in crystal lattice, etc.) and their distributions are extremely difficult, especially in complex colored materials such as rocks, the combined microspectroscopic methods are useful for their nondestructive characterization.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3