Novel Molecular Spectroscopic Multimethod Approach for Monitoring Water Absorption/Desorption Kinetics of CAD/CAM Poly(Methyl Methacrylate) Prosthodontics

Author:

Wiedemair Verena1,Mayr Sophia1,Wimmer Daniel S.1,Köck Eva Maria2,Penner Simon2,Kerstan Andreas3,Steinmassl Patricia-Anca4,Dumfahrt Herbert4,Huck Christian W.1

Affiliation:

1. Institute of Analytical Chemistry and Radiochemistry, CCB – Center for Chemistry and Biomedicine, Innsbruck, Austria

2. Institute of Physical Chemistry, CCB – Center for Chemistry and Biomedicine, Innsbruck, Austria

3. Agilent Technologies, Waldbronn, Germany

4. University Hospital for Dental Prosthetics and Restorative Dentistry, Medical University of Innsbruck, Innsbruck, Austria

Abstract

Water absorbed to poly(methyl methacrylate) (PMMA)-based CAD/CAM (computer-assisted design/computer-assisted manufacturing) prosthodontics can alter their properties including hardness and stability. In the present contribution, water absorption and desorption kinetics under defined experimental conditions were monitored employing several supplementary and advanced Fourier transform infrared (FT-IR) spectroscopic techniques in combination with multivariate analysis (MVA). In this synergistic vibrational spectroscopic multimethod approach, first a novel near-infrared (NIR) diffuse fiber optic probe reflection spectroscopic method was established for time-resolved analysis of water uptake within seven days under controlled conditions. Near-infrared water absorbance spectra in a wavenumber range between 5288–5100 cm−1 (combination band) and 5424–5352 cm−1 (second overtone) were used establishing corresponding calibration and validation models to quantify the amount of water in the milligram range. Therefore, 14 well-defined samples exposed to prior optimized experimental conditions were taken into consideration. The average daily water uptake conducting reference analysis was calculated as 22 mg/day for one week. Additionally, in this study for the first time NIR two-dimensional correlation spectroscopy (2D-COS) was conducted to monitor and interpret the spectral dynamics of water absorption on the prosthodontics in a wavenumber range of 5100–5300 cm−1. For sensitive time-resolved recording of water desorption, a recently developed high-temperature, high-pressure FT-IR reaction cell with water-free ultra-dry in situ and operando operation was applied. The reaction cell, as well as the sample holder, was fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high temperature zone. Applying a temperature gradient in the range of 25–150 ℃, mid-infrared (MIR) 2D-COS was successfully conducted to get insights into the dynamic behavior of O–H (1400–1800 cm−1) absorption bands with increasing temperature over time and the release of CO2 (2450 cm−1) from the polymers. In addition, an ATR FT-IR imaging setup was optimized in order to investigate the surface homogeneity of the PMMA-based resins with a spatial resolution to 2 µm. From this vibrational spectroscopic multimethod approach and the collection of several analytical data, conclusions were drawn as to which degree the surface structure and/or its porosity have an impact onto the amount of water absorption.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3