Monitoring Noble Gases (Xe and Kr) and Aerosols (Cs and Rb) in a Molten Salt Reactor Surrogate Off-Gas Stream Using Laser-Induced Breakdown Spectroscopy (LIBS)

Author:

Andrews Hunter B.1ORCID,McFarlane Joanna2,Myhre Kristian G.1ORCID

Affiliation:

1. Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

2. Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

This study with surrogate materials shows that laser-induced breakdown spectroscopy (LIBS) is a robust tool with promising capability toward monitoring gaseous (Xe and Kr) and aerosol (Cs and Rb) species in an off-gas stream from a molten salt reactor (MSR). MSRs will continually evolve fission products into the cover gas flowing across the reactor headspace. The cover gas entrains Xe and Kr gases, along with aerosol particles, before passing into an off-gas treatment system. Univariate models of Xe and Kr peaks showed a strong correlation to concentration indicated by their coefficients of determination of 0.983 and 0.997, respectively. Multivariate models were built for all four analytes using partial least squares regression coupled with preprocessing steps including normalization, trimming, and/or genetic algorithm derived filters. The models were evaluated by predicting the concentrations of the analytes in four validation samples, in which all calibration models were successfully validated at a confidence interval of 99.9%. Lastly, pressure controllers were used to regulate the mass flow rate of Kr flowing into the measurement cell in sinusoidal and stepwise waveforms to test the real-time monitoring capabilities of the regression models. Both univariate and partial least squares Kr models were able to successfully quantify the gas concentration in the real-time evaluation. The root mean squared error of prediction (RMSEP) values for these real-time tests were calculated to be 0.051, 0.060, and 0.121 mol% demonstrating the measurement systems’ capability to perform online monitoring with acceptable accuracy.

Funder

Department of Energy Office of Nuclear Energy’s Advanced Reactor Development Program

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3