Effects of the Hydration State on the Mid-Infrared Spectra of Urea and Creatinine in Relation to Urine Analyses

Author:

Oliver Katherine V.1,Maréchal Amandine1,Rich Peter R.1

Affiliation:

1. Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, United Kingdom

Abstract

When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm–1) and dry (1464 cm–1) states and two intermediate (1454 cm–1 and 1443 cm–1) forms that arise from specific urea–water and/or urea–urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3