Self-Calibrated Laser-Induced Breakdown Spectroscopy for the Quantitative Elemental Analysis of Suspended Volcanic Ash

Author:

Taleb Aya1,Dell’Aglio Marcella2ORCID,Gaudiuso Rosalba1,Mele Daniela3,Dellino Pierfrancesco3,De Giacomo Alessandro12ORCID

Affiliation:

1. Department of Chemistry, University of Bari, Bari, Italy

2. CNR-IFN (National Research Council—Institute for Photonics and Nanotechnologies), C-O Physics Department, University of Bari, Bari, Italy

3. Department of Earth and Geoenvironmental Sciences, University of Bari, Bari, Italy

Abstract

Real-time analysis of fine ash in volcanic plumes, which represent magma fragments expelled from the crater during explosive eruptions, is a valuable tool for volcano monitoring and hazard assessment. To obtain the chemical characterization of the juvenile pyroclastic material emitted in volcanic plumes, many analytical techniques can be used. Among them, laser-induced breakdown spectroscopy (LIBS) is the one that can most easily be adapted to advanced applications in extreme environments. In this paper, LIBS experiments based on self-calibrated approaches are used to determine the elemental composition of suspended volcanic ash. To simulate the conditions of dispersed volcanic ash in the atmosphere, different sizes of volcanic ash samples are suspended in the air by laser-induced shockwaves in a dedicated chamber, and a parametric study is carried out to establish the optimal experimental conditions for recording usable plasma emission spectra for each ash size. The quantitative analysis is performed using a self-calibrated analytical method, including calibration-free LIBS, which is based on the calculation of the spectral radiance of a uniform plasma in local thermodynamic equilibrium. The method accounts intrinsically for self-absorption since it modifies the intensity of spectral lines and thus leads to an underestimation of the elemental fraction. An intensity calibration of the spectra based on the measurements of Fe lines intensities was also used in this work to deduce the apparatus response from the spectrum itself and avoid the use of standard calibration lamps. Results demonstrate the potential of real-time measurements of elemental fractions in volcanic ash with good agreement with the literature composition.

Funder

Ministero dell'Istruzione e del Merito

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3