Photoacoustic Spectroscopy of Surface-Functionalized Fe3O4–SiO2 Nanoparticles

Author:

Pawlaczyk Mateusz1ORCID,Pasieczna-Patkowska Sylwia2ORCID,Schroeder Grzegorz1

Affiliation:

1. Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland

2. Department of Chemical Technology, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland

Abstract

A permanent development of hybrid materials based on the highly absorptive or opaque materials has prompted a need of analytical tools, which are able to overcome obstacles connected with their physicochemical features. Iron oxide (II, III) (Fe3O4) nanoparticles gained a huge attention as supporters, as they are not only easily accessible using various synthetic approaches, but they also exhibit homogeneity and paramagnetic properties, which make them easily separable materials. Nevertheless, the classic infrared spectroscopic studies might meet several problems with characterization of such systems. Therefore, infrared spectroscopy in photoacoustic mode using Fourier transform infrared–photoacoustic infrared spectroscopy (FT-IR PAS) can be an extremely sensitive and exact analytical tool for investigation of the magnetite-based hybrid material surface. Herein, we present a synthesis of Fe3O4 nanoparticles using co-precipitation method with their subsequent encapsulation within silica matrix decorated with different silanes containing various terminal functional groups. The proper syntheses of core/shell structures were confirmed using the FT-IR PAS method. Each spectrum exhibited specific bands corresponding to vibrations of magnetite particles, silica lattice, and particular surface functional groups, which strictly indicated successful grafting of silanes onto Fe3O4 surface.

Funder

European Social Fund under the Operational Program Knowledge Education Development

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3