Determination of Magnesium Oxide Content in Mineral Medicine Talcum Using Near-Infrared Spectroscopy Integrated with Support Vector Machine

Author:

Lei Mi1,Chen Long12,Huang Bisheng1,Chen Keli1

Affiliation:

1. Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription & Hubei University of Chinese Medicine, Wuhan, China

2. Nanzhang People’s Hospital, Xiangyang, Hubei, China

Abstract

In this research paper, a fast, quantitative, analytical model for magnesium oxide (MgO) content in medicinal mineral talcum was explored based on near-infrared (NIR) spectroscopy. MgO content in each sample was determined by ethylenediaminetetraacetic acid (EDTA) titration and taken as reference value of NIR spectroscopy, and then a variety of processing methods of spectra data were compared to establish a good NIR spectroscopy model. To start, 50 batches of talcum samples were categorized into training set and test set using the Kennard–Stone (K-S) algorithm. In a partial least squares regression (PLSR) model, both leave-one-out cross-validation (LOOCV) and training set validation (TSV) were used to screen spectrum preprocessing methods from multiplicative scatter correction (MSC), and finally the standard normal variate transformation (SNV) was chosen as the optimal pretreatment method. The modeling spectrum bands and ranks were optimized using PLSR method, and the characteristic spectrum ranges were determined as 11995–10664, 7991–6661, and 4326–3999 cm−1, with four optimal ranks. In the support vector machine (SVM) model, the radical basis function (RBF) kernel function was used. Moreover, the full spectrum data of samples pretreated with SNV, the characteristic spectrum data screened using synergy interval partial least squares (SiPLS), and the scoring data of the first four ranks obtained by a partial least squares (PLS) dimension reduction of characteristic spectrum were taken as input variables of SVM, and the MgO content reference values of various sample were taken as output values. In addition, the SVM model internal parameters were optimized using the grid optimization method (GRID), particle swarm optimization (PSO), and genetic algorithm (GA) so that the optimal C and g-values were determined and the validation model was established. By comprehensively comparing the validation effects of different models, it can be concluded that the scoring data of the first four ranks obtained by PLS dimension reduction of characteristic spectrum were taken as input variables of SVM, and the PLS-SVM regression model established using GRID was the optimal NIR spectroscopy quantitative model of talc. This PLS-SVM regression model (rank = 4) measured that the MgO content of talcum was in the range of 17.42–33.22%, with root mean square error of cross validation (RMSECV) of 2.2127%, root mean square error of calibration (RMSEC) of 0.6057%, and root mean square error of prediction (RMSEP) of 1.2901%. This model showed high accuracy and strong prediction capacity, which can be used for rapid prediction of MgO content in talcum.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3