Affiliation:
1. Department of Physics and Astronomy, Washington State University, Pullman, WA, USA
Abstract
Photoluminescence spectroscopy is a nondestructive optical method that is widely used to characterize semiconductors. In the photoluminescence process, a substance absorbs photons and emits light with longer wavelengths via electronic transitions. This paper discusses a method for identifying substances from their photoluminescence spectra using machine learning, a technique that is efficient in making classifications. Neural networks were constructed by taking simulated photoluminescence spectra as the input and the identity of the substance as the output. In this paper, six different semiconductors were chosen as categories: gallium oxide (Ga2O3), zinc oxide (ZnO), gallium nitride (GaN), cadmium sulfide (CdS), tungsten disulfide (WS2), and cesium lead bromide (CsPbBr3). The developed algorithm has a high accuracy (>90%) for assigning a substance to one of these six categories from its photoluminescence spectrum and correctly identified a mixed Ga2O3/ZnO sample.
Subject
Spectroscopy,Instrumentation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献