Affiliation:
1. Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
2. The Institute of Optics, University of Rochester, Rochester, NY, USA
Abstract
Back-illuminated charged-coupled device (BI-CCD) arrays increase quantum efficiency but also amplify etaloning, a multiplicative, wavelength-dependent fixed-pattern effect. When spectral data from hundreds of BI-CCD rows are combined, the averaged spectrum will generally appear etalon-free. This can mask substantial etaloning at the row level, even if the BI-CCD has been treated to suppress the effect. This paper compares two methods of etalon correction, one with simple averaging and one with row-by-row calibration using a fluorescence standard. Two BI-CCD arrays, both roughened by the supplier to reduce etaloning, were used to acquire Raman spectra of murine bone specimens. For one array, etaloning was the dominant source of noise under the exposure conditions chosen, even for the averaged spectrum across all rows; near-infrared-excited Raman peaks were noticeably affected. In this case, row-by-row calibration improved the spectral quality of the average spectrum. The other CCD’s performance was shot-noise limited and therefore received no benefit from the extra calibration. The different results highlight the importance of checking for and correcting row-level fixed pattern when measuring weak Raman signals in the presence of a large fluorescence background.
Subject
Spectroscopy,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献