Application of Mn–Cu Helical Star-Shaped (Pine-Tree-Like) Sculpted Thin Films with Different Symmetries Using Surface-Enhanced Raman Spectroscopy (SERS)

Author:

Savaloni Hadi1ORCID,Goli-Haghighi Shokoofe1,Babaei Reza2

Affiliation:

1. School of Physics, College of Science, University of Tehran, Tehran, Iran

2. Plasma Physics Research Center, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In this work, the surface engineering method is used to produce Mn helical star-shaped (pine-tree-like) nanosculptured thin films with three-, four-, and fivefold symmetries on Cu substrates using an oblique angle deposition technique together with rotation of the sample holder at certain angles. Nano structure and morphologies of the produced samples were obtained by means of atomic force microscope and field emission scanning electron microscope. Raman spectroscopy of the Mn/Cu samples impregnated by 4,4′-bipyridine (C10H8N2) solution with different concentrations, zidovudine (C10H13N5O4), and L-histidine (C6H9N3O2) was performed using 532 nm laser wavelength. A high degree of enhancement is achieved on Raman spectroscopy of all of these specimens. Comparison of the surface-enhanced Raman spectroscopy (SERS) results for 4,4′ bipyridine (bipy) obtained in this work with the published literature using Ag and Au substrates in different shapes showed a significant enhancement improvement by using Mn sculptured structures. Reduction of the bipy concentration changed the enhancement factor. Enhancement factors of 107 and 105 were obtained for threefold symmetry sample using 2.885 × 10–2 and 10–3 mol L–1 bipy concentrations, respectively. Surface-enhanced Raman spectroscopy results of this work show that Mn nanostructures designed and engineered in this work can not only replace Ag and Au materials, but also provide a much higher enhancement factor.

Funder

University of Tehran

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3