Quantitative Analysis of Iron and Silicon Concentrations in Iron Ore Concentrate Using Portable X-ray Fluorescence (XRF)

Author:

Zhou Shubin1ORCID,Yuan Zhaoxian2,Cheng Qiuming1,Weindorf David C.3,Zhang Zhenjie1,Yang Jie1,Zhang Xiaolong4,Chen Guoxiong5,Xie Shuyun5

Affiliation:

1. State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China

2. Institute of Resource and Environmental Engineering, Hebei Geo University, Shi Jiazhuang, China

3. Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA

4. School of Resources & Civil Engineering, Northeastern University, Shenyang, China

5. State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China

Abstract

As a technique capable of rapid, nondestructive, and multi-elemental analysis, portable X-ray fluorescence (pXRF) has applications to mineral exploration, environmental evaluation, and archaeological analysis. However, few applications have been conducted in the smelting industry especially when analyzing the metal concentration in ore concentrate samples. This research analyzed the effectiveness of using pXRF in determining the metal concentration in Fe concentrate. For this proof of concept study, Fe ore samples dominated by Fe and Si were collected from the Northeastern University Mineral Processing Laboratory (Shenyang, China) and directly analyzed using pXRF, laboratory-based XRF, and titration methods. The compactness (density) of the ore concentrate was found to have very little effect on pXRF readings. The pXRF readings for Fe and Si were comparative to laboratory-based XRF results. Based on the strong correlations between the pXRF and XRF results (Fe: R2 > 0.99, Si: R2 > 0.96), linear calibrations were adopted to improve the accuracy of pXRF readings. Linear regression equations derived from the relations between XRF results and pXRF results of 21 Fe ore concentrate samples were used to calibrate the pXRF, and then validation was performed on five additional samples. Results from this preliminary study suggest that ordinary least squares (OLS) regression improves the accuracy dramatically, especially for Fe with relative errors (REs) decreasing to 0.03%–3.27% from 4.26%–8.32%. Consequently, pXRF shows strong promise for rapid, quantitative analysis of Fe concentration in Fe ore concentrate. Based on the results obtained in this study, a larger, more comprehensive study is warranted to confirm the results obtained.

Funder

Research Program of Hebei Education Department

The China Geological Survey Project

National Natural Science Foundation of China

The BL Allen Endowment in Pedology at Texas Tech University

National Key Research and Development Program of China

The Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3