Performance Evaluation of a Time-Gated Fluorescence Spectroscopy Measurement System for the Classification and Recycling of Plastics

Author:

Fomin Petr1ORCID,Kargel Christian1

Affiliation:

1. Department of Electrical Engineering and Information Technology, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Munich, Germany

Abstract

Plastics have many unrivaled properties and are thus indispensable materials with an ever-increasing production. Since the plastics recycling rates are still small, the plastic waste that ends up on landfills, in the environment including oceans, and incineration plants also steadily grows. Large-scale automated sorting of waste plastics may help solve the problem. However, most state-of-the-art approaches are limited to a (very) small number of plastic types that can be simultaneously sorted and have severe difficulties with black plastics. The labeling of plastics with fluorescent tracers (“markers”) during their production has the potential to enable the fast and highly reliable classification and automated sorting of many different plastic types simultaneously. Unfortunately, the unique marker fluorescence (“optical fingerprint”) might be obscured by the autofluorescence (AF) often emitted by plastics. Recently, we have shown that time-gated fluorescence spectroscopy (TGFS) can be successfully applied to eliminate the influences from AF. In this study, we present the prototype of a TGFS measurement system for the classification and sorting of plastics and evaluate its performance in a typical industrial situation. With 150 000 investigated plastics flakes from 10 different plastic types that were labeled with binary combinations of six fluorescent markers, an overall plastics recovery rate (mean true positive rate [Formula: see text]) of 99.76%, and a plastics purity (positive predictive value [Formula: see text]) of 99.88% were achieved. Additional simulations that were carried out based upon the experiments allow a prediction of the performance as a function of the signal-to-noise (S/N) ratio such that various system parameters can be adapted to the particular situation.

Funder

German Federal Ministry of Economics and Technology

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3