Spectral Considerations for Standoff Infrared Detection of RDX on Reflective Aluminum

Author:

Major Kevin J.1ORCID,Sanghera Jasbinder S.1,Farrell Mikella E.2,Holthoff Ellen3,Pellegrino Paul M.2,Ewing Kenneth J.1ORCID

Affiliation:

1. Optical Sciences Division, US Naval Research Laboratory, Washington, DC, USA

2. United States Army Research Laboratory, RDRL-SEE-E, Adelphi, MD, USA

3. Office of the Deputy Assistant of the Army for Research and Technology, Arlington, VA, USA

Abstract

This paper examines infrared spectroscopic effects for the standoff detection of an explosive material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), inkjet printed on an aluminum surface. Results of a spectroscopic study are described, using multiple optical setups. These setups were selected to explore how variations in the angles of incidence and collection from the surface of the material result in corresponding variations in the spectral signatures. The goal of these studies is to provide an understanding of these spectral changes since it affects standoff detection of hazardous materials on a reflective substrate. We demonstrate that variations in spectral effects are dependent on the relative surface concentration of the deposited RDX. We also show that it is reasonable to use spectroscopic data collected in a standard laboratory infrared spectrometer outfitted with a variable angle reflectometer set at 0° as reference spectra for data collected in a standoff configuration. These results are important to provide a systematic approach to understanding infrared (IR) spectra collection using standoff systems in the field, and to allow for comparison between such data, and data collected in the laboratory. Although the precise results are constrained to a specific material system (thin layers on a reflective substrate), the approach and general discussion provided are applicable to a broad range of IR standoff sensing techniques and applications.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3