Resonance Raman Spectra for the In Situ Identification of Bacteria Strains and Their Inactivation Mechanism

Author:

Dhankhar Dinesh1ORCID,Nagpal Anushka1,Li Runze2,Chen Jie3,Cesario Thomas C.4ORCID,Rentzepis Peter M.1

Affiliation:

1. Department of Electrical and Computer Engineering, Texas A&M University, College Station, USA

2. School of Physical Science and Technology, Shanghai Tech University, Shanghai, China

3. Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, China

4. School of Medicine, University of California at Irvine, Irvine, USA

Abstract

The resonance Raman spectra of bacterial carotenoids have been employed to identify bacterial strains and their intensity changes as a function of ultraviolet (UV) radiation dose have been used to differentiate between live and dead bacteria. In addition, the resonance-enhanced Raman spectra enabled us to detect bacteria in water at much lower concentrations (∼108 cells/mL) than normally detected spectroscopically. A handheld spectrometer capable of recording resonance Raman spectra in situ was designed, constructed, and was used to record the spectra. In addition to bacteria, the method presented in this paper may also be used to identify fungi, viruses, and plants, in situ, and detect infections within a very short period of time.

Funder

Welch Foundation

Air Force Office of Scientific Research

Texas A&M Engineering Experiment Station (TEES) funds

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3