Magnetic-Field-Confined Laser Induced Kohl Plasma: Elemental Analysis and Plasma Characterization

Author:

Mushtaq Saba1ORCID,Siraj Khurram1,Abdul Rahim Muhammad Shahzad1,Ulhaq Sami2ORCID,Younas Qaneeta1,Asad Waqas3,Shahzad Nimra1,Latif Anwar1

Affiliation:

1. Laser and Optronics Centre, Department of Physics, University of Engineering and Technology, Lahore, Pakistan

2. National Institute of Laser and Optronics College, Pakistan Institute of Engineering and Applied Science, Islamabad, Pakistan

3. Department of Physics, NED University of Engineering and Technology, Karachi, Pakistan

Abstract

In this study, the laser-induced kohl plasma is produced in the vicinity of the transverse magnetic field ( B) of 0.8 T. A Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) pulse laser (λ = 1064 nm, E = 100 mJ, τl = 8 ns) is focused to produce the kohl plasma with and without a B, and the plasma emissions are recorded using a laser-induced breakdown spectroscopy (LIBS) spectrometer. The comparison of the emission spectra shows that most of the emission line intensities are reduced due to the field. However, except for a few lines which are enhanced up to three times. However, the plasma parameters such as electron temperature ( T e), electron number density ( N e), and plasma frequency (ʋ p) have been increased. Furthermore, thermal beta (βt) is also estimated analytically, and its value is smaller than one (β < 1) for all samples, which confirmed the evidence of magnetic confinement effects. According to the analysis of the kohl emission spectrum, several elements were detected (Pb, Ca, Mg, Fe, Cr, and Zn), among which lead (Pb) and chromium (Cr) may cause chronic health effects like contact dermatitis and neurological diseases. A calibration-free LIBS (CF-LIBS) method is used for the quantitative elemental analysis of the detected elements, which yields Pb as 15–74% and Cr as 3%, which exceed the permissible limit for kohl.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3