Parameter Estimation in Spectral Resolution Enhancement Based on Forward–Backward Linear Prediction Total Least Square Method

Author:

Qin Yusheng12ORCID,Han Xin1,Li Xiangxian1,Tong Jingjing1,Gao Minguang1

Affiliation:

1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China

2. University of Science and Technology of China, Hefei, China

Abstract

In a Fourier transform infrared (IR) spectrometer, the Michelson interference signal extrapolation method based on linear prediction is often used to improve spectral resolution. In this method, an autoregressive (AR) model is established for the Michelson interference signal in the spectrometer. Once the AR model parameters are determined, the AR process is predictable. The interference signal can be used to figure out the AR model's parameters. Based on this, the AR model can be used to extrapolate the interference signal to improve the spectral resolution. In this paper, the forward–backward linear prediction total least squares (FB-TLS) method is proposed to estimate the parameters of the AR model. The parameters that are estimated are used to improve the IR spectral resolution. By simulating different order and signal-to-noise ratio situations, the effects of the Burg, the least square, and the FB-TLS parameter estimation methods on spectral resolution enhancement are studied. The simulation results demonstrate that the FB-TLS parameter estimation method can effectively suppress noise and avoid spurious peaks. The experimental results demonstrate that the FB-TLS parameter estimation method is effective for spectral resolution enhancement technology based on linear prediction. When the FB-TLS method is used to enhance NH3 IR spectral resolution from 2 cm−1 to 1 cm−1, the spectral prediction error in the NH3 characteristic band is only 0.21% compared with the measured NH3 spectrum, whose spectral resolution is 1 cm−1.

Funder

key research and development projects in Zhejiang Province

National Natural Science Foundation of China

National Key Research and Development Project of China

Key research and development projects in Anhui Province

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3