Predicting the Likelihood of Colorectal Cancer with Artificial Intelligence Tools Using Fourier Transform Infrared Signals Obtained from Tumor Samples

Author:

Villamanca John Jerald1,Hermogino Lemuel John1,Ong Katherine Denise1,Paguia Brian1,Abanilla Lorenzo2,Lim Antonio2,Angeles Lara Mae3,Espiritu Bernadette4,Isais Maura45,Tomas Rock Christian6ORCID,Albano Pia Marie127

Affiliation:

1. Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines

2. Department of Pathology, Divine Word Hospital, Tacloban City, Philippines

3. Department of Pathology, University of Santo Tomas Hospital, Manila, Philippines

4. Department of Pathology, Bulacan Medical Center, Malolos City, Philippines

5. The Graduate School, University of Santo Tomas, Manila, Philippines

6. Department of Electrical Engineering, University of the Philippines Los Baños, Los Baños, Philippines

7. Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines

Abstract

The early and accurate detection of colorectal cancer (CRC) significantly affects its prognosis and clinical management. However, current standard diagnostic procedures for CRC often lack sensitivity and specificity since most rely on visual examination. Hence, there is a need to develop more accurate methods for its diagnosis. Support vector machine (SVM) and feedforward neural network (FNN) models were designed using the Fourier transform infrared (FT-IR) spectral data of several colorectal tissues that were unanimously identified as either benign or malignant by different unrelated pathologists. The set of samples in which the pathologists had discordant readings were then analyzed using the AI models described above. Between the SVM and NN models, the NN model was able to outperform the SVM model based on their prediction confidence scores. Using the spectral data of the concordant samples as training set, the FNN was able to predict the histologically diagnosed malignant tissues ( n = 118) at 59.9–99.9% confidence (average = 93.5%). Of the 118 samples, 84 (71.18%) were classified with an above average confidence score, 34 (28.81%) classified below the average confidence score, and none was misclassified. Moreover, it was able to correctly identify the histologically confirmed benign samples ( n = 83) at 51.5–99.7% confidence (average = 91.64%). Of the 83 samples, 60 (72.29%) were classified with an above average confidence score, 22 (26.51%) classified below the average confidence score, and only 1 sample (1.20%) was misclassified. The study provides additional proof of the ability of attenuated total reflection (ATR) FT-IR enhanced by AI tools to predict the likelihood of CRC without dependence on morphological changes in tissues.

Funder

Research Center for the Natural and Applied Sciences

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3