Critical Evaluation of Spectral Resolution Enhancement Methods for Raman Hyperspectra

Author:

Schulze H. Georg1,Rangan Shreyas23ORCID,Vardaki Martha Z.4ORCID,Blades Michael W.5,Turner Robin F. B.256ORCID,Piret James M.237

Affiliation:

1. Monte do Tojal, Hortinhas, Terena (São Pedro), Portugal

2. Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada

3. School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada

4. Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece

5. Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada

6. Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada

7. Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada

Abstract

Overlapping peaks in Raman spectra complicate the presentation, interpretation, and analyses of complex samples. This is particularly problematic for methods dependent on sparsity such as multivariate curve resolution and other spectral demixing as well as for two-dimensional correlation spectroscopy (2D-COS), multisource correlation analysis, and principal component analysis. Though software-based resolution enhancement methods can be used to counter such problems, their performances often differ, thereby rendering some more suitable than others for specific tasks. Furthermore, there is a need for automated methods to apply to large numbers of varied hyperspectral data sets containing multiple overlapping peaks, and thus methods ideally suitable for diverse tasks. To investigate these issues, we implemented three novel resolution enhancement methods based on pseudospectra, over-deconvolution, and peak fitting to evaluate them along with three extant methods: node narrowing, blind deconvolution, and the general-purpose peak fitting program Fityk. We first applied the methods to varied synthetic spectra, each consisting of nine overlapping Voigt profile peaks. Improved spectral resolution was evaluated based on several criteria including the separation of overlapping peaks and the preservation of true peak intensities in resolution-enhanced spectra. We then investigated the efficacy of these methods to improve the resolution of measured Raman spectra. High resolution spectra of glucose acquired with a narrow spectrometer slit were compared to ones using a wide slit that degraded the spectral resolution. We also determined the effects of the different resolution enhancement methods on 2D-COS and on chemical contrast image generation from mammalian cell spectra. We conclude with a discussion of the particular benefits, drawbacks, and potential of these methods. Our efforts provided insight into the need for effective resolution enhancement approaches, the feasibility of these methods for automation, the nature of the problems currently limiting their use, and in particular those aspects that need improvement.

Funder

Natural Sciences and Engineering Research Council of Canada

Collaborative Health Research Projects Program

Canadian Institutes of Health Research

Canadian Foundation for Innovation

British Columbia Knowledge Development Foundation

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3