Group and Basis Restricted Non-Negative Matrix Factorization and Random Forest for Molecular Histotype Classification and Raman Biomarker Monitoring in Breast Cancer

Author:

Deng Xinchen1ORCID,Milligan Kirsty1,Ali-Adeeb Ramie1,Shreeves Phillip2,Brolo Alexandre3ORCID,Lum Julian J.45,Andrews Jeffrey L.2,Jirasek Andrew1ORCID

Affiliation:

1. Department of Physics, The University of British Columbia Kelowna, Canada

2. Department of Statistics, The University of British Columbia, Kelowna, Canada

3. Department of Chemistry, University of Victoria, Victoria, Canada

4. Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada

5. Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, Canada

Abstract

Raman spectroscopy is a non-invasive optical technique that can be used to investigate biochemical information embedded in cells and tissues exposed to ionizing radiation used in cancer therapy. Raman spectroscopy could potentially be incorporated in personalized radiation treatment design as a tool to monitor radiation response in at the metabolic level. However, tracking biochemical dynamics remains challenging for Raman spectroscopy. Here we developed a novel analytical framework by combining group and basis restricted non-negative matrix factorization and random forest (GBR-NMF-RF). This framework can monitor radiation response profiles in different molecular histotypes and biochemical dynamics in irradiated breast cancer cells. Five subtypes of; human breast cancer (MCF-7, BT-474, MDA-MB-230, and SK-BR-3) and normal cells derived from human breast tissue (MCF10A) which had been exposed to ionizing radiation were tested in this framework. Reference Raman spectra of 20 biochemicals were collected and used as the constrained Raman biomarkers in the GBR-NMF-RF framework. We obtained scores for individual biochemicals corresponding to the contribution of each Raman reference spectrum to each spectrum obtained from the five cell types. A random forest classifier was then fitted to the chemical scores for performing molecular histotype classifications (HER2, PR, ER, Ki67, and cancer versus non-cancer) and assessing the importance of the Raman biochemical basis spectra for each classification test. Overall, the GBR-NMF-RF framework yields classification results with high accuracy (>97%), high sensitivity (>97%), and high specificity (>97%). Variable importance calculated in the random forest model indicated high contributions from glycogen and lipids (cholesterol, phosphatidylserine, and stearic acid) in molecular histotype classifications.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3