Time-Resolved Vibrational Spectroscopy of Polytetrafluoroethylene Under Laser-Shock Compression

Author:

Rastogi Vinay12,Rao Usha1,Chaurasia Shivanand12,Sijoy Chakkalakkal Davis3,Mishra Vinayak3,Chaturvedi Shashank4,Deo Mukul Narayan12

Affiliation:

1. High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India

2. Homi Bhabha National Institute, Mumbai, India

3. Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam, India

4. Institute for Plasma Research, Gandhinagar, Gujarat, India

Abstract

Shock-wave-induced high pressure and nanosecond time-resolved Raman spectroscopic experiments were performed to examine the dynamic response of polytetrafluoroethylene (PTFE) in confinement geometry targets. Time-resolved Raman spectroscopy was used to observe the pressure-induced molecular and chemical changes on nanosecond time scale. Raman spectra were measured as a function of shock pressure in the 1.2–2.4 GPa range. Furthermore, the symmetric stretching mode at 729 cm–1 of CF2 was compared to corresponding static high-pressure measurements carried out in a diamond anvil cell, to see if any general trend can be established. The symmetric stretching mode of CF2 at 729 cm–1 is the most intense Raman transition in PTFE and is very sensitive to change in pressure. Therefore, it can also be utilized as a pressure gauge for large amplitude shock wave compression experiments. A maximum blueshift of 12 cm–1 for the 729 cm–1 vibrational mode has been observed for the present experimental pressure range. A comparative study on the similarities and differences from the earlier work has been done in detail. One-dimensional radiation hydrodynamic simulations were performed to validate our shock compression results and are in very good agreement.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3