Distinguishing Resonant from Non-Resonant Nonlinear Optical Processes Using Intensity–Intensity Correlation Analyses

Author:

Nagpal Supriya1,Semon Bryan1,Ariunbold Gombojav O.1ORCID

Affiliation:

1. Department of Physics and Astronomy, Mississippi State University, Mississippi State, USA

Abstract

Three-color coherent anti-Stokes Raman scattering (CARS) represents non-degenerate four wave mixing that includes both non-resonant and resonant processes, the contributions of which depend upon how the molecular vibrational modes are being excited by the input laser pulses. The scattering signal due to resonant processes builds up progressively. An advanced analytical tool to reveal this deferred resonant signal buildup phenomenon is in need. In this work, we adapt a quantitative analytical tool by introducing one-dimensional and two-dimensional intensity–intensity correlation functions in terms of a new variable (probe pulse delay) and a new perturbation parameter (probe pulse linewidth). In particular, discrete diagonal directional sums are defined here as a tool to reduce both synchronous and asynchronous two-dimensional correlation spectroscopy (2D-COS) maps down to one-dimensional plots while maintaining the valuable analytical information. Detailed analyses using the all-Gaussian coherent Raman scattering closed-form solutions and the representative experimental data for resonant and non-resonant processes are presented and compared. The present work holds a promising potential for industrial application, e.g., by extractive industries to distinguish hydrocarbons (chemically resonant substance) from water (non-resonant contaminant) by utilizing the one- and two-dimensional correlation analyses.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3