Affiliation:
1. Department of Fluid and Experimental Mechanics, Luleå University of Technology, Luleå, Sweden
Abstract
Preprocessing of Raman spectra is generally done in three separate steps: (1) cosmic ray removal, (2) signal smoothing, and (3) baseline subtraction. We show that a convolutional neural network (CNN) can be trained using simulated data to handle all steps in one operation. First, synthetic spectra are created by randomly adding peaks, baseline, mixing of peaks and baseline with background noise, and cosmic rays. Second, a CNN is trained on synthetic spectra and known peaks. The results from preprocessing were generally of higher quality than what was achieved using a reference based on standardized methods (second-difference, asymmetric least squares, cross-validation). From 105 simulated observations, 91.4% predictions had smaller absolute error (RMSE), 90.3% had improved quality (SSIM), and 94.5% had reduced signal-to-noise (SNR) power. The CNN preprocessing generated reliable results on measured Raman spectra from polyethylene, paraffin and ethanol with background contamination from polystyrene. The result shows a promising proof of concept for the automated preprocessing of Raman spectra.
Funder
Vetenskapsrådet
Stiftelsen för Strategisk Forskning
Subject
Spectroscopy,Instrumentation
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献