Deep Learning Models for Data-Driven Laser Induced Breakdown Spectroscopy (LIBS) Analysis of Interstitial Oxygen Impurities in Czochralski-Si Crystals

Author:

Davari Seyyed Ali12,Mukherjee Dibyendu13ORCID

Affiliation:

1. Nano-BioMaterials Laboratory for Energy, Energetics and Environment (nbml-E3), University of Tennessee, Knoxville, Tennessee, USA

2. California Air Resources Board, Sacramento, California, USA

3. Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA

Abstract

Analytical advantages of facile and expeditious spectral data collections from laser-induced breakdown spectroscopy (LIBS) are often offset by the low-accuracy quantitative analyses offered by the technique due to non-equilibrium plasma–matrix interactions. Herein, we developed a one-dimensional (1D) convolutional neural network (CNN) and a least absolute shrinkage and selection operator (LASSO) models for LIBS data analyses to predict trace amounts of interstitial oxygen impurities in commercial Czochralski-silicon (Cz-Si) crystals with known interstitial oxygen concentrations at 0–16 parts per million (ppm). While traditional spectral analyses from O(I) (777.2 nm) atomic lines offer poor accuracy, CNN and LASSO analyses generate excellent predictions for the interstitial oxygen concentrations. Specifically, CNN-based spectral analyses uniquely identified systematic alterations in LIBS fingerprints manifested by laser-matter interactions. Our results pave the path for combining facile and voluminous LIBS data collection with deep learning driven high-fidelity data analytics.

Funder

SunEdison Semiconductor

Air Force Office of Scientific Research

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3