Simple Defocused Fiber Optic Volume Probe for Subsurface Raman Spectroscopy in Turbid Media

Author:

Walther Anders Runge1ORCID,Andersen Morten Østergaard1,Dam Christine Kamstrup2,Karlsson Frederikke2,Hedegaard Martin Aage Barsøe1

Affiliation:

1. Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark

2. Mads Clausen Institute, University of Southern Denmark, Odense, Denmark

Abstract

We investigated the ability to perform deep subsurface Raman spectroscopy in turbid media using a simple fiber optic volume probe. Being able to collect Raman signals from regions deep within a biological sample provides the ability to noninvasively study underlying living tissue and tissue engineered constructs with high chemical specificity. Spatially offset Raman spectroscopy has shown great potential for obtaining subsurface Raman signals in biological samples. The applicability of the method for in vivo studies depends on the system complexity and small size probes are often desirable. Most real-time studies on human patients utilizing Raman spectroscopy have been performed with easy-to-handle miniaturized probes. Here we show both experimentally and theoretically that the sampling depth from a simple volume probe can be controlled by changing the probe to sample distance effectively suppressing Raman and fluorescence contributions from shallow sample layers while favoring the collection of signals from deeper layers. Relative spectral intensities as function of probe to sample distance were investigated for layered phantoms of poly(methyl methacrylate) and trans-stilbene and compared with theory. The volume probe was then utilized for the collection of spectra from phantoms mimicking in vivo transcutaneous measurement configurations of bone and engineered scaffold as well as from an ex vivo sample of bone and soft tissue. Together the results show that Raman fiber optic volume probes can be utilized for subsurface Raman spectroscopy in turbid media, providing a simple alternative to spatially offset Raman systems for, e.g., noninvasive monitoring and studying mineralized tissue and implanted scaffolds in vivo.

Funder

Independent Research Fund Denmark

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3