A Newly Designed Infrared Reflection Absorption Spectroscopy System for In Situ Characterization from Ultrahigh Vacuum to Ambient Pressure

Author:

Du Yunshu12,Li Ling12,Wang Xuan12,Qiu Hengshan1ORCID

Affiliation:

1. Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, China

2. University of Chinese Academy of Sciences, Beijing, China

Abstract

We present a novel ultrahigh vacuum (UHV) compatible polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) system that is designed for in situ surface spectroscopic characterization on a transferable single crystalline sample. The innovative design of manipulator rod and high-pressure cell (HPC) ensures free movement of the sample between the preparation chamber and the HPC, and perfect separation of them during high pressure experiments. The pressure in the HPC can be varied from UHV (10−9 mbar) to ambient pressure (1000 mbar) while keeping the preparation chamber under UHV conditions. The design of the transferable sample holder and receiving stage allows precise temperature measurement and allows convenient sample changing. In situ IRRAS measurements under variable pressure and temperature can be conducted either in the conventional mode or with polarization modulation. Other surface characterization methods can also use the preparation chamber; thus, the system is endowed with the capability for systematic investigations of surface catalytic reactions. A case study of CO adsorption and oxidation on Pt(111) demonstrates the performance of the system.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3