Linear and Nonlinear Calibration Methods for Predicting Mechanical Properties of Polypropylene Pellets Using Raman Spectroscopy

Author:

Banquet-Terán Julio1,Johnson-Restrepo Boris1,Hernández-Morelo Alveiro1,Ropero Jorge2,Fontalvo-Gomez Miriam2,Romañach Rodolfo J3

Affiliation:

1. School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Colombia

2. Department of Chemistry, University of Atlántico, Barranquilla, Colombia

3. Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico

Abstract

A nondestructive and faster methodology to quantify mechanical properties of polypropylene (PP) pellets, obtained from an industrial plant, was developed with Raman spectroscopy. Raman spectra data were obtained from several types of samples such as homopolymer PP, random ethylene–propylene copolymer, and impact ethylene–propylene copolymer. Multivariate calibration models were developed by relating the changes in the Raman spectra to mechanical properties determined by ASTM tests (Young’s traction modulus, tensile strength at yield, elongation at yield on traction, and flexural modulus at 1% secant). Several strategies were evaluated to build robust models including the use of preprocessing methods (baseline correction, vector normalization, de-trending, and standard normal variate), selecting the best subset of wavelengths to model property response and discarding irrelevant variables by applying genetic algorithm (GA). Linear multivariable models were investigated such as partial least square regression (PLS) and PLS with genetic algorithm (GA-PLS) while nonlinear models were implemented with artificial neural network (ANN) preceded by GA (GA-ANN). The best multivariate calibration models were obtained when a combination of genetic algorithms and artificial neural network were used on Raman spectral data with relative standard errors (%RSE) from 0.17 to 0.41 for training and 0.42 to 0.88% validation data sets.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3