Dual-Domain Calibration Transfer Using Orthogonal Projection

Author:

Poerio Dominic V.1,Brown Steven D.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA

Abstract

We report the use of dual-domain regression models, which were built utilizing a wavelet prism decomposition and paired with transfer by orthogonal projection, for the calibration transfer of near-infrared (NIR) spectra. The new method is based on obtaining specific frequency components for a spectrum via wavelet analysis, projecting the frequency components of the primary instrument onto the subspace orthogonal to the mean instrumental difference between spectra from the primary and the secondary instrument, and weighting each frequency component model according to the cross-validation error of the frequency components of the projected primary instrument’s spectra to generate a stacked ensemble model robust to contributions to the spectra from instrumental variations. The method, which does not require property values from the secondary data set, is tested on three NIR data sets, and is compared with orthogonal projection in the wavelength domain, orthogonal signal correction, and with model updating approaches. For the data sets we examined, we show that the prediction performance of the new method is competitive with orthogonal projections in the wavelength domain, as well as orthogonal signal correction and model updating approaches, both of which require property values for spectra from the secondary instrument. Examination of the spectral data reconstructed from the projected frequency components indicates that aspects of the data that may be attributable to instrumental or physical phenomena (i.e., instrumental baseline shifts or discretized intensity changes which may be attributed to scatter) are suppressed, but those associated with the chemical phenomena are retained. The benefits of orthogonal projection on each individual frequency component are further corroborated by the fact that the models based on frequency component projection generalize better to unseen instruments compared with the other methods.

Funder

Directorate for Mathematical and Physical Sciences

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3