Optimizing Data Reduction Procedures in Spatial Heterodyne Raman Spectroscopy with Applications to Planetary Surface Analogs

Author:

Egan Miles Jacob1,Angel S. Michael2,Sharma Shiv K.1ORCID

Affiliation:

1. Hawaii Institute of Geophysics and Planetology, University of Hawaii at Mānoa, USA

2. Department of Chemistry and Biochemistry, University of South Carolina, USA

Abstract

A spatial heterodyne Raman spectrometer (SHRS) is a variant of a Michelson interferometer in which the mirrors of a Michelson are replaced with two stationary diffraction gratings. When light enters the SHRS, it is reflected off of diffraction gratings at frequency-dependent angles that produce crossed wavefronts in space that can be imaged using a plane array detector. The crossed wavefronts, which represent a superposition of interference fringes, are converted to a Raman spectrum upon applying a Fourier transform. In this work, a new approach to intensity calibration is discussed that originates from modeling the shot noise produced by the SHRS and converting the real noise to idealized white noise as predicted by theory. This procedure has two effects. First, the technique produces Raman spectra with white noise. Second, when the mean of the noise is normalized to one, the technique produces Raman spectra where the intensity axis is equivalent to signal-to-noise ratio. The data reduction technique is then applied to the measurement of materials of interest to the planetary science community, including minerals and inorganic salts, at a distance of 5 m from the collecting optic.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3