Optical Characterization of Paper Aging Based on Laser-Induced Fluorescence (LIF) Spectroscopy

Author:

Zhang Hao1ORCID,Wang Shun1,Chang Keke1,Sun Haifeng1,Guo Qingqian1,Ma Liuzheng1,Yang Yatao1,Zou Caihong1,Wang Ling1,Hu Jiandong12

Affiliation:

1. College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China

2. State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China

Abstract

Paper aging and degradation are growing concerns for those who are responsible for the conservation of documents, archives, and libraries. In this study, the paper aging was investigated using laser-induced fluorescence spectroscopy (LIFS), where the fluorescence properties of 47 paper samples with different ages were explored. The paper exhibits fluorescence in the blue-green spectral region with two peaks at about 448 nm and 480 nm under the excitation of 405 nm laser. Both fluorescence peaks changed in absolute intensities and thus the ratio of peak intensities was also influenced with the increasing ages. By applying principal component analysis (PCA) and k-means clustering algorithm, all 47 paper samples were classified into nine groups based on the differences in paper age. Then the first-derivative fluorescence spectral curves were proposed to figure out the relationship between the spectral characteristic and the paper age, and two quantitative models were established based on the changes of first-derivative spectral peak at 443 nm, where one is an exponential fitting curve with an R-squared value of 0.99 and another is a linear fitting curve with an R-squared value of 0.88. The results demonstrated that the combination of fluorescence spectroscopy and PCA can be used for the classification of paper samples with different ages. Moreover, the first-derivative fluorescence spectral curves can be used to quantitatively evaluate the age-related changes of paper samples.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Henan Province

National Natural Science Foundation of China

Science and Technology Project of Henan Province

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3