A New Approach to Measuring the Temperature of Fluids Reaching 300 ℃ and 2 mol/kg NaCl Based on the Raman Shift of Water

Author:

Li Lianfu123,Zhang Xin123ORCID,Luan Zhendong12,Du Zengfeng1,Xi Shichuan13,Wang Bing13,Lian Chao1,Yan Jun1

Affiliation:

1. CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

3. University of Chinese Academy of Sciences, Beijing, China

Abstract

The OH stretching band of water is very sensitive to temperature and salinity for the existence of hydrogen bonds between H2O molecules. In this study, the OH stretching band was deconvoluted into two Gaussian peaks, with peak 1 at approximately 3450 cm−1 and peak 2 at approximately 3200 cm−1. The positions of peaks 1 and 2 both shifted to higher wavenumbers with increasing temperature from 50 ℃ to 300 ℃. The effects of salinity in the range of 0–2 mol/kg NaCl on the OH stretching band were also studied. Linearity for the relationship between Raman shift of peak 1 and temperature increased as the salt concentration increased from 0 to 2 mol/kg, while peak 2 displayed an opposing trend. Two temperature calibration models were developed based on the temperature-dependent changes in the Raman frequency shifts of peaks 1 and 2 (precision of 0.9 ℃ and 1.0 ℃, respectively). The calibration models for temperature were successfully applied to determining the temperatures of deep-sea hydrothermal fluids in the Okinawa Trough hydrothermal field. The degree of mixing of hydrothermal fluids and ambient seawater during in situ Raman measurements was estimated by the difference in temperatures determined through these calibration models and those measured through thermocouple sensors.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3