Exploring the mechanism of metformin action in Alzheimer’s disease and type 2 diabetes based on network pharmacology, molecular docking, and molecular dynamic simulation

Author:

Shi Xin1ORCID,Li Lingling1,Liu Zhiyao1,Wang Fangqi1,Huang Hailiang2

Affiliation:

1. Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China

2. Shandong University of Traditional Chinese Medicine, 4655 Guyunhu Street, Changqing District, Jinan City, Shandong Province, China

Abstract

Background: Metformin, which has been shown to be highly effective in treating type 2 diabetes (T2D), is also believed to be valuable for Alzheimer’s disease (AD). Computer simulation techniques have emerged as an innovative approach to explore mechanisms. Objective: To study the potential mechanism of metformin action in AD and T2D. Methods: The chemical structure of metformin was obtained from PubChem. The targets of metformin were obtained from PubChem, Pharm Mapper, Batman, SwissTargetPrediction, DrugBank, and PubMed. The pathogenic genes of AD and T2D were retrieved from the GeneCards, OMIM, TTD, Drugbank, PharmGKB, and DisGeNET. The intersection of metformin with the targets of AD and T2D is represented by a Venn diagram. The protein-protein interaction (PPI) and core targets networks of intersected targets were constructed by Cytoscape 3.7.1. The enrichment information of GO and Kyoto Encyclopedia of Gene and Genomics (KEGG) pathways obtained by the Metascape was made into a bar chart and a bubble diagram. AutoDockTools, Pymol, and Chem3D were used for the molecular docking. Gromacs software was used to perform molecular dynamics (MD) simulation of the best binding target protein. Results: A total of 115 key targets of metformin for AD and T2D were obtained. GO analysis showed that biological process mainly involved response to hormones and the regulation of ion transport. Cellular component was enriched in the cell body and axon. Molecular function mainly involved kinase binding and signal receptor regulator activity. The KEGG pathway was mainly enriched in pathways of cancer, neurodegeneration, and endocrine resistance. Core targets mainly included TP53, TNF, VEGFA, HIF1A, IL1B, IGF1, ESR1, SIRT1, CAT, and CXCL8. The molecular docking results showed best binding of metformin to CAT. MD simulation further indicated that the CAT-metformin complex could bind well and converge relatively stable at 30 ns. Conclusion: Metformin exerts its effects on regulating oxidative stress, gluconeogenesis and inflammation, which may be the mechanism of action of metformin to improve the common pathological features of T2D and AD.

Funder

Shandong University of Traditional Chinese Medicine Research and Innovation Outstanding Team

Publisher

SAGE Publications

Subject

Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3