Utilizing Emergent AI Chatbot Technology to Generate Mathematical Writing Models for Elementary Students With Learning Disabilities

Author:

Smith R. Alex1ORCID,Smith Erin1,Price Madeline D.1ORCID

Affiliation:

1. University of Nevada-Las Vegas, Las Vegas, NV, USA

Abstract

Mathematical writing (MW) can support students’ mathematical learning and is common in mathematics assessment. However, MW is known to be particularly challenging for students with learning disabilities. While the use of model compositions of both high- and low-quality writing and the act of revision are evidence-based practices in writing instruction, models of MW are not readily available in the curriculum, and many teachers struggle to compose high-quality MW themselves. Artificial intelligence (AI) chatbots are increasingly accessible for teachers and provide one avenue by which MW models can be readily generated. This column guides educators on utilizing AI chatbots to produce MW models to support MW instruction for students with learning disabilities.

Publisher

SAGE Publications

Reference28 articles.

1. Al-Sibai N. (2023, April 17). Google surprised when experimental AI learns language it was never trained on. The Byte. https://futurism.com/the-byte/google-ai-bengali

2. Mathematics-writing profiles for students with mathematics difficulty

3. Banilower E. R., Smith P. S., Malzahn K. A., Plumley C. L., Gordon E. M., Hayes M. L. (2018). Report of the 2018 NSSME+. http://horizon-research.com/NSSME/wp-content/uploads/2019/06/Report_of_the_2018_NSSME.pdf

4. Bing. (2023). Bing (April 17-24 version) [Large language model]. https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx

5. Casa T. M., Firmender J. M., Cahill J., Cardetti F., Choppin J. M., Cohen J. . .Zawodniak R. (2016). Types of and purposes for elementary mathematical writing: Task force recommendations. http://mathwriting.education.uconn.edu

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3