Properties of High-Molecular-Mass Placental Alkaline Phosphatases in Normal Pregnancy Sera

Author:

Matsushita Makoto12,Irino Tsutomu2,Minowa Masakazu3,Komoda Tsugikazu3,Stigbrand Torgny1

Affiliation:

1. Department of Medical Biochemistry and Biophysics, University of Umeå, S-901 87 Umeå, Sweden

2. Department of Clinical Chemistry, Saitama College of Health, 519 Kamiohkubo, Urawa 338

3. First Department of Biochemistry, Saitama Medical School, 38 Moroyama, Saitama 350-04, Japan

Abstract

We examined the appearance of high-molecular-mass placental alkaline phosphatases (HPLAPs) in the serum of normal pregnant women by means of polyacrylamide gel electrophoresis (PAGE) in the presence of Triton X-100. The HPLAPs were undetectable or only slightly detectable by PAGE in the absence of Triton X-100. The HPLAPs were detected in all sera sampled during the last trimester of pregnancy. The catalytic activities of total placental alkaline phosphatase (TPLAP) and HPLAPs were correlated (r = 0.96) and the ratio of HPLAPs/TPLAP catalytic activity was 0.20 (0.06) (mean and SD) in 40 serum samples from pregnant women. The HPLAPs appear to be formed from a common dimeric placental alkaline phosphatase (PLAP) (common-PLAP), as judged by the fact that they were formed again after removal of HPLAPs from serum by gel filtration. The formation of HPLAPs was more prominently observed with the faster fractions of gel filtration. The apparent molecular mass of the HPLAPs in pregnancy serum was 720 K Da by gel filtration. HPLAPs were not converted to common-PLAP by phosphatidylinositol-specific phospholipase (PIPL) C and PIPL-D treatments. The HPLAPs were selectively incorporated into liposomes consisting of phosphatidylcholine/cholesterol, and most of the PIPL-D-treated PLAP could form HPLAPs, while a small amount of PLAP could not form HPLAPs. On the other hand, HPLAPs in pregnant women's sera and HPLAPs prepared from partially purified PLAP in vitro could be converted to common-PLAP by brief treatment with subtilisin. However, the highly purified PLAP could not form HPLAPs in the presence of Triton X-100. These results suggest that PIPL-D-resistant and PLAP-associated serum protein may regulate the conversion of PLAP to HPLAP in the presence of Triton X-100.

Publisher

SAGE Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3