Serum neuron-specific enolase measurement for neuro-prognostication post out-of-hospital cardiac arrest: Determination of the optimum testing strategy in routine clinical use

Author:

Clifford-Mobley Oliver1ORCID,Palmer Frances1,Rooney Kieron2,Skorko Agnieszka2ORCID,Bayly Graham1

Affiliation:

1. Department of Clinical Biochemistry, University Hospitals Bristol NHS Foundation Trust, Bristol, UK

2. Department of Intensive Care Medicine, University Hospitals Bristol NHS Foundation Trust, Bristol, UK

Abstract

Background Measurement of serum neuron-specific enolase (NSE) for neuro-prognostication post out-of-hospital cardiac arrest (OHCA) is recommended by international guidelines. There is, however, a lack of consensus regarding the cut-offs and time points to use. In addition, NSE is particularly susceptible to haemolysis interference. This study aimed to define the optimum NSE testing strategy to support the intensive care unit (ICU). Methods Patients admitted to ICU post-OHCA over 16 months had NSE measured. The outcome was survival to ICU discharge. NSE at 0 h, 24 h, 48 h, 72 h and change in NSE (ΔNSE) were assessed for prognostic accuracy using receiver operator characteristic curve analysis. The magnitude of haemolysis interference was quantified by spiking haemolysate into paired serum. Results There is a consistent linear increase in NSE with increasing haemolysis, independent of baseline NSE concentration. A haemolysis index acceptance threshold was defined as 20. There were 142 patients, and 82 survived to ICU discharge. The NSE parameter with best predictive performance was ΔNSE at 48 h, which had an area under the receiver operator characteristic curve of 0.91. A cut-off of >0 μg/L at this time point had sensitivity of 80% and specificity of 97% for predicting death on ICU. When patients who died of non-neurological causes were removed, the sensitivity increased to 91%. Conclusions Application of a stringent haemolysis interference threshold and measurement of NSE at two time points enabled us to achieve excellent discrimination. Increasing NSE over the first 48 h, suggestive of an ongoing reperfusion injury to the brain, is a strong predictor of poor outcome.

Publisher

SAGE Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3