Affiliation:
1. Department of Chemical Pathology, SydPath, St Vincent’s Hospital, Sydney, Australia
Abstract
Background Average of normals is a tool used to control assay performance using the average of a series of results from patients’ samples. Delta checking is a process of identifying errors in individual patient results by reviewing the difference from previous results of the same patient. This paper introduces a novel alternate approach, average of delta, which combines these concepts to use the average of a number of sequential delta values to identify changes in assay performance. Methods Models for average of delta and average of normals were developed in a spreadsheet application. The model assessed the expected scatter of average of delta and average of normals functions and the effect of assay bias for different values of analytical imprecision and within- and between-subject biological variation and the number of samples included in the calculations. The final assessment was the number of patients’ samples required to identify an added bias with 90% certainty. Results The model demonstrated that with larger numbers of delta values, the average of delta function was tighter (lower coefficient of variation). The optimal number of samples for bias detection with average of delta was likely to be between 5 and 20 for most settings and that average of delta outperformed average of normals when the within-subject biological variation was small relative to the between-subject variation. Conclusions Average of delta provides a possible additional assay quality control tool which theoretical modelling predicts may be more valuable than average of normals for analytes where the group biological variation is wide compared with within-subject variation and where there is a high rate of repeat testing in the laboratory patient population.
Subject
Clinical Biochemistry,General Medicine
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献