Decreased integration of the frontoparietal network during a working memory task in major depressive disorder

Author:

Tan Wenjian12,Liu Zhening12,Xi Chang12,Deng Mengjie12,Long Yicheng12,Palaniyappan Lena345ORCID,Yang Jie12ORCID

Affiliation:

1. Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China

2. National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China

3. Department of Psychiatry, University of Western Ontario, London, ON, Canada

4. Robarts Research Institute, University of Western Ontario, London, ON, Canada

5. Lawson Health Research Institute, London, ON, Canada

Abstract

Background: Working memory deficits are a common feature in major depressive disorder and are associated with poor functional outcomes. Intact working memory performance requires the recruitment of large-scale brain networks. However, it is unknown how the disrupted recruitment of distributed regions belonging to these large-scale networks at the whole-brain level brings about working memory impairment seen in major depressive disorder. Methods: We used graph theory to examine the functional connectomic metrics (local and global efficiency) at the whole-brain and large-scale network levels in 38 patients with major depressive disorder and 41 healthy controls during a working memory task. Altered connectomic metrics were studied in a moderation model relating to clinical symptoms and working memory accuracy in patients, and a machine learning method was employed to assess whether these metrics carry enough illness-specific information to discriminate patients from controls. Results: Global efficiency of the frontoparietal network was reduced in major depressive disorder (false discovery rate corrected, p = 0.014); this reduction predicted worse working memory performance in patients with less severe illness burden indexed by Brief Psychiatric Rating Scale (β =–0.43, p = 0.035, t =–2.2, 95% confidence interval = [–0.043,–0.002]). We achieved a classification accuracy and area under the curve of 73.42% and 0.734, respectively, to discriminate patients from controls based on connectomic metrics, and the global efficiency of the frontoparietal network contributed most to the diagnostic classification. Conclusions: We report a putative mechanistic link between the global efficiency of the frontoparietal network and impaired n-back performance in major depressive disorder. This relationship is more pronounced at lower levels of symptom burden, indicating the possibility of multiple pathways to cognitive deficits in severe major depressive disorder.

Funder

China Precision Medicine Initiative

fundamental research funds for the central universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Psychiatry and Mental health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3