Effective transport properties of the porous electrodes in solid oxide fuel cells

Author:

Choi H-W1,Berson A1,Pharoah J G1,Beale S B2

Affiliation:

1. Queen's-RMC Fuel Cell Research Centre, Queen's Kingston, Kingston, ON, Canada

2. National Research Council, Ottawa, ON, Canada

Abstract

This article presents a numerical framework for the computation of the effective transport properties of solid oxide fuel cells (SOFCs) porous electrodes from three-dimensional (3D) constructions of the microstructure. Realistic models of the 3D microstructure of porous electrodes are first constructed from measured parameters such as porosity and particle size distribution. Then each phase in the model geometries is tessellated with a computational grid. Three different types of grids are considered: Cartesian, octree, and body-fitted/cut-cell with successive levels of surface refinement. Finally, a finite volume method is used to compute the effective transport properties in the three phases (pore, electron, and ion) of the electrode. To validate the numerical approach, results obtained with the finite volume method are compared to those calculated with a random walk simulation for the case of a body-centred cubic lattice of spheres. Then, the influence of the sample size is investigated for random geometries with monosized particle distributions. Finally, effective transport properties are calculated for model geometries with polydisperse particle size distributions similar to those observed in actual SOFC electrodes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Hierarchical Pores on the Water Transport in Microporous Layer of Proton Exchange Membrane Fuel Cells;Energy & Fuels;2024-07-31

2. A grid-based percolation model for the electrode of the solid oxide fuel cell;International Journal of Green Energy;2023-08-10

3. Multiphysics topology optimization of a multifunctional structural battery composite;Structural and Multidisciplinary Optimization;2023-02-18

4. Effective Diffusivity From Analytical Solution for Banks of Cylinders;Journal of Electrochemical Energy Conversion and Storage;2022-08-08

5. Effective Transport Properties;Electrochemical Cell Calculations with OpenFOAM;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3