Anatomical head model to measure impact force transfer through the head layers and their displacement

Author:

Falland-Cheung Lisa1,Neil Waddell J1,Li Kai C1,Tong Darryl C1,Brunton Paul A1

Affiliation:

1. Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand

Abstract

When the human head is subjected to blunt force impact, there are several mechanical responses that may result from the forces involved, including absorption of impact forces through the various layers of the head. The purpose of this study was to develop an anatomical head model to measure force transfer through the various head layers and their displacement when subject to short-duration high-velocity impacts. An anatomical head model was constructed using previously validated simulant materials: epoxy resin (skull), polyvinyl siloxane (scalp), agar/glycerol/water (brain) and modified intravenous fluid for the cerebrospinal fluid. An array of accelerometers (4 mm × 4 mm × 1.45 mm) was incorporated into the various layers of the head to measure forces in x- (anterior/posterior), y- (left/right) and z- (up/down) axis. All sensors were connected to a signal conditioning board and USB powered data loggers. The head model was placed into a rigid metal stand with an optical sensor to trigger data capturing. A weight (750 g) was dropped from a height of 0.5 m (n= 20). Impact forces (z-axis) of 1107.05 N were recorded on top of the skin, with decreasing values through the different layers (bottom of skin 78.48 N, top of skull 319.82 N, bottom of skull 87.30 N, top and centre of brain 47.09 N and base of brain 78.41 N. Forces in the x- and y-axes were similar to those of the z-axis. With the base of the brain still receiving 78.41 N, this highlights the potential danger of repetitive impact forces to the head. Upon impact the layers of the head are displaced in the x-, y- and z-direction, with the highest values shown in the z-axis. In conclusion, this study identified the importance of considering short-duration high-intensity impacts to the head and their effect on underlying tissues.

Funder

Maurice and Phyllis Paykel Trust

Neurological Foundation of New Zealand

Publisher

SAGE Publications

Subject

Earth-Surface Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3