Affiliation:
1. First Propedeutic Department of Internal Medicine, AHEPA Hospital, Thessaloniki, Greece
2. Department of Medicine, First Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
Abstract
Background Adiponectin, leptin, and resistin are the most well-studied adipokines and play important roles in the regulation of glucose metabolism, subclinical inflammation, and cardiovascular homeostasis. Accordingly, measurement of adipokine levels might be useful in cardiovascular risk stratification. Moreover, the study of single-nucleotide polymorphisms of genes that encode these adipokines might also represent a valuable predictive tool in cardiovascular disease prevention strategies. Aims To summarize the biologic role of the adipokines adiponectin, leptin, and resistin and the prognostic value of their serum levels regarding the occurrence and outcome of ischemic stroke. We also discuss the relationship of single-nucleotide polymorphisms of the adiponectin, leptin genes, and the −420C > G polymorphism of resistin gene with stroke risk. Summary of review Several studies in the general population evaluated the association between these adipokines and stroke risk, yielding conflicting results. There are more limited data regarding the effect of these adipokines on stroke severity and outcome. A small number of studies also assessed the predictive role of single-nucleotide polymorphisms of the adiponectin, leptin, and resistin genes regarding stroke risk, but the findings were also controversial. Conclusions It is unclear whether adiponectin, leptin, and resistin levels or the single-nucleotide polymorphisms of their encoding genes are independently associated with stroke risk. However, given the role of these adipokines in the pathogenesis of atherosclerosis, larger prospective studies, both in the general population and in patients with a history of stroke, are needed to determine whether the measurement of serum levels of these adipokines or the evaluation of single-nucleotide polymorphisms in their encoding genes could improve stroke risk prediction. If this relationship is proven, therapeutic interventions targeting adipokine levels might represent a novel approach to reduce stroke-related mortality and disability.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献