The Stroop Negative Priming Matching Task: A New Task for the Direct Comparison of Interference Control and Inhibition

Author:

Sammer Gebhard1ORCID,Lockhofen Denise1,Lenz Eva1

Affiliation:

1. Justus Liebig University, Giessen, Germany

Abstract

Inhibition processing is an inherent part of cognitive and behavioral control. The aim of the present study was to develop and investigate psychometric criteria of an experimental paradigm that combines Stroop interference and negative priming, both of which involve inhibitory processes. We adopted a Stroop matching paradigm assessing interference control and implemented a negative priming condition. A nonclinical community sample of 94 volunteers performed this Stroop Negative Priming Matching paradigm. Since timing plays a role in priming, the interval between the prime and the probe has been varied in length (500 ms, 800 ms, and 3000 ms). The main results showed both, effects of Stroop interference and negative priming, as indicated by reaction times and incorrect responses. Reduced time pressure showed an effect on response speed and accuracy, but no interaction with interference and priming effects occurred. Reliability computed as internal consistency was generally high and did not differ between Stroop interference and negative priming scales. Retest-reliability was best for the prime–probe interval of 3000 ms. Concluding, the Stroop negative priming matching task provides reliable and directly comparable assessment of Stroop interference and negative priming effects.

Publisher

SAGE Publications

Subject

Applied Psychology,Clinical Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3