The Effect of Missing Item Data on the Relative Predictive Accuracy of Correctional Risk Assessment Tools

Author:

Perley-Robertson Bronwen1ORCID,Babchishin Kelly M.1,Helmus L. Maaike2

Affiliation:

1. Carleton University, Ottawa, Ontario, Canada

2. Simon Fraser University, Burnaby, British Columbia, Canada

Abstract

Missing data are pervasive in risk assessment but their impact on predictive accuracy has largely been unexplored. Common techniques for handling missing risk data include summing available items or proration; however, multiple imputation is a more defensible approach that has not been methodically tested against these simpler techniques. We compared the validity of these three missing data techniques across six conditions using STABLE-2007 ( N = 4,286) and SARA-V2 ( N = 455) assessments from men on community supervision in Canada. Condition 1 was the observed data (low missingness), and Conditions 2 to 6 were generated missing data conditions, whereby 1% to 50% of items per case were randomly deleted in 10% increments. Relative predictive accuracy was unaffected by missing data, and simpler techniques performed just as well as multiple imputation, but summed totals underestimated absolute risk. The current study therefore provides empirical justification for using proration when data are missing within a sample.

Funder

the traditional, unceded, and unsurrendered territories of the Algonquin Anishinaabe Peoples

the Coast Salish Peoples

the Squamish, Tsleil-Waututh, Musqueam, and Kwikwetlem Peoples

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3