Accuracy of Humeral Implant Positioning Using a Canal-Sparing Total Shoulder Arthroplasty System

Author:

Baranek Eric S1ORCID,Trofa David P1,Levine William N1,Goldberg Steven S2

Affiliation:

1. Department of Orthopedic Surgery, NewYork-Presbyterian/Columbia University Medical Center, New York, New York

2. Division of Orthopedic Surgery, Physicians Regional Medical Center – Pine Ridge, Naples, Florida

Abstract

Background Accurate restoration of anatomy is critical in reestablishing proper glenohumeral joint function in total shoulder arthroplasty (TSA). However, even experienced surgeons inconsistently achieve anatomic restoration. This study evaluates whether a new canal-sparing arthroplasty system, designed using the principles of calibrated bone resection and incorporating a nonspherical humeral head prosthesis, can assist in more accurate and reliable reproduction of proximal humeral anatomy compared to a stemmed arthroplasty system. Methods The difference between the anatomic center of rotation (COR) of the humeral head and the postoperative prosthetic COR (defined as ΔCOR) was measured in a consecutive case series of 110 shoulder arthroplasties performed by a single surgeon. The first 55 cases used a stemmed arthroplasty system and the subsequent 55 cases used a new canal-sparing implant system that uses a multiplanar osteotomy (MPO) during humeral head preparation. Cases with ΔCOR ≥3.0 mm were deemed clinically significant outliers. Results The average ΔCOR in the MPO group was 1.7 ± 1.2 mm versus 2.8 ± 1.5 mm in the stemmed group ( P = .00005). The incidence of outliers was lower (14.5% vs 40.0%, P = .005), and there were more cases with a ΔCOR ≤1.0 mm (32.7% vs 3.6%, P = .0001) in the MPO group compared to the stemmed group. Conclusion The MPO TSA system provided improved accuracy and precision in restoring proximal humeral anatomy compared to stemmed arthroplasty systems, even in its initial use. This alternative method of humeral replacement may increase consistency in restoring proper anatomy and kinematics in TSA.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3