Statistical contributions to bioinformatics: Design, modelling, structure learning and integration

Author:

Morris Jeffrey S.1,Baladandayuthapani Veerabhadran1

Affiliation:

1. Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.

Abstract

The advent of high-throughput multi-platform genomics technologies providing whole- genome molecular summaries of biological samples has revolutionalized biomedical research. These technologiees yield highly structured big data, whose analysis poses significant quantitative challenges. The field of bioinformatics has emerged to deal with these challenges, and is comprised of many quantitative and biological scientists working together to effectively process these data and extract the treasure trove of information they contain. Statisticians, with their deep understanding of variability and uncertainty quantification, play a key role in these efforts. In this article, we attempt to summarize some of the key contributions of statisticians to bioinformatics, focusing on four areas: (1) experimental design and reproducibility, (2) preprocessing and feature extraction, (3) unified modelling and (4) structure learning and integration. In each of these areas, we highlight some key contributions and try to elucidate the key statistical principles underlying these methods and approaches. Our goals are to demonstrate major ways in which statisticians have contributed to bioinformatics, encourage statisticians to get involved early in methods development as new technologies emerge, and to stimulate future methodological work based on the statistical principles elucidated in this article and utilizing all available information to uncover new biological insights.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3