Childhood obesity in Singapore: A Bayesian nonparametric approach

Author:

Beraha Mario1,Guglielmi Alessandra2,Quintana Fernando Andrés3,De Iorio Maria456,Eriksson Johan Gunnar4,Yap Fabian7

Affiliation:

1. ESOMAS, University of Torino, Torino, Italy

2. Department of Mathematics, Politecnico di Milano, Milano, Italy

3. Department of Statistics, Pontificia Universidad Católica de Chile, Santiago, Chile

4. Yong Loo Lin School of Medicine, National University of Singapore, Singapore

5. Department of Statistical Science, University College London, UK

6. Singapore Institute for Clinical Sciences (SICS)/*A*Star

7. Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore

Abstract

Overweight and obesity in adults are known to be associated with increased risk of metabolic and cardiovascular diseases. Obesity has now reached epidemic proportions, increasingly affecting children. Therefore, it is important to understand if this condition persists from early life to childhood and if different patterns can be detected to inform intervention policies. Our motivating application is a study of temporal patterns of obesity in children from South Eastern Asia. Our main focus is on clustering obesity patterns after adjusting for the effect of baseline information. Specifically, we consider a joint model for height and weight over time. Measurements are taken every six months from birth. To allow for data-driven clustering of trajectories, we assume a vector autoregressive sampling model with a dependent logit stick-breaking prior. Simulation studies show good performance of the proposed model to capture overall growth patterns, as compared to other alternatives. We also fit the model to the motivating dataset, and discuss the results, in particular highlighting cluster differences. We have found four large clusters, corresponding to children sub-groups, though two of them are similar in terms of both height and weight at each time point. We provide interpretation of these clusters in terms of combinations of predictors.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3